skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Doole, Fathima T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Intrinsically disordered proteins (IDPs) are a class of proteins that lack stable three-dimensional structures. Despite their natural tendency to be disordered, precise modulations of molecular parameters (e.g., sequence, length) through biomolecular engineering tools and control of environmental conditions tailor the formation of dynamic self-assembled structures. In addition to designing structures that respond to external stimuli for specific biotechnological applications (e.g., biosensors), other applications require stable structures (e.g., engineered tissues, drug delivery vehicles) that resist unintended changes and disassembly across various environmental conditions, such as different concentrations and temperatures. This review provides a comprehensive understanding of the design and engineering principles that govern the self-assembly of biosynthetic IDPs and their stability. Specifically, elastin-like polypeptides (ELPs) are highlighted as a prominent example of biosynthetically designed, thermoresponsive IDPs. Examples include ELPs that form various self-assembled structures by themselves as ELP homopolymers or diblock copolymers, ELPs combined with other IDPs in diblock copolymers, and ELP-based polymer hybrids containing functional (bio)molecules. It is anticipated that the efforts to enhance the stability of self-assembled structures through the precise engineering of IDP-based polymers have expanded the potential for diverse biotechnological applications in tissue engineering, drug delivery, diagnostic assays, and biomedicine. 
    more » « less